Cellular and Technological Breakthroughs in Cancer
Cancer is a process where the cells grow aberrantly and this growth of cancer cells results in damage of normal tissues, causing loss of function and often pain. The cancer therapeutic drugs are those drugs that block the growth and spread of cancer by interfering with specific molecules (molecular targets) that are involved in the growth, progression and spread of cancer. Moreover, gene therapy approaches may be designed to directly kill tumor cells using tumor killing viruses, or through the introduction of genes termed as suicide genes into the tumor cells. The Food and Drug Administration (FDA) has approved many cancer therapies in order to treat specific types of cancers. To develop targeted therapies it requires the identification of good targets that is, those targets that play a key role in cancer cell growth and survival. One way to identify potential targets is to compare the amounts of individual proteins in cancer cells with those present in normal cells. Gene silencing has also been designed to inhibit the expression of specific genes which are activated or over expressed in cancer cells and can drive tumor growth, blood vessel formation and allow resistance for chemotherapy.
- Cancer gene therapy
- Nano methods to target cancer cells
- Nano micro fluids in cell therapy
- Nano materials and nano engineering
- Molecular medicines
Related Conference of Cellular and Technological Breakthroughs in Cancer
21th World Congress on Tissue Engineering Regenerative Medicine and Stem Cell Research
16th International Conference on Human Genetics and Genetic Diseases
19th International Conference on Genomics & Pharmacogenomics
Cellular and Technological Breakthroughs in Cancer Conference Speakers
Recommended Sessions
- Advances in Biomedical Engineering, Imaging and Screening
- Cell & Gene Therapy Development & Production
- Cell Therapy
- Cell Therapy Bioprocessing
- Cellular and Technological Breakthroughs in Cancer
- Clinical and Translational Research
- Gene Therapy
- Genetic Medicine
- Immunotherapy
- Molecular Medicine
- Nuclear Medicine
- Rare Diseases & Orphan drugs
- Stem Cell Research and Regenerative Medicine
- Synthetic Biology and CRISPR Technology
- Technologies in Stem Cell Research
Related Journals
Are you interested in
- Artificial Intelligence and Computational Biology in Regenerative Medicine - Stemgen 2026 (Japan)
- Biomaterials and Nanotechnology in Regenerative Medicine - Stemgen 2026 (Japan)
- Cancer Stem Cells and Oncology - Stemgen 2026 (Japan)
- Cardiovascular Regeneration - Stemgen 2026 (Japan)
- Clinical Trials and Translational Stem Cell Research - Stemgen 2026 (Japan)
- Ethical, Legal, and Social Implications in Stem Cell Research - Stemgen 2026 (Japan)
- Future Trends: Organoids, Bioengineering, and Next-Generation Therapies - Stemgen 2026 (Japan)
- Gene Editing and CRISPR Technologies - Stemgen 2026 (Japan)
- Induced Pluripotent Stem Cells (iPSCs) and Reprogramming - Stemgen 2026 (Japan)
- Mesenchymal Stem Cells (MSCs) in Therapy - Stemgen 2026 (Japan)
- Regenerative Dentistry and Craniofacial Applications - Stemgen 2026 (Japan)
- Regenerative Medicine and Tissue Engineering - Stemgen 2026 (Japan)
- Stem Cell Banking and Cryopreservation - Stemgen 2026 (Japan)
- Stem Cell Biology and Cellular Mechanisms - Stemgen 2026 (Japan)
- Stem Cells in Neurological and Neurodegenerative Disorders - Stemgen 2026 (Japan)
