Nuclear Medicine
Nuclear medicine is a branch of medical imaging that involves the application of radioactive substances called radiotracers that are generally injected into the bloodstream, inhaled or swallowed. The radiotracer then travels through the area being examined and gives off energy in the form of gamma rays, which are detected by a special camera and a computer to create images of inside the body. It is used to diagnose or determine the severity of or treat different types of diseases like many types of cancers, heart disease, neurological disease, gastrointestinal disease, and other abnormalities inside the body. As nuclear medicine techniques are able to identify molecular activity within the body, they offer the capability to detect diseases in its very early stages as well as a patient’s immediate response to therapeutic interventions. There are two most common imaging methods in nuclear medicine, one is Single Photon Emission Computed Tomography or SPECT and the other is Positron Emission Tomography or PET scans.
- Radionuclides
- Radioimmunotherapy
- Interventional Nuclear Medicine
- Nuclear Imaging
Related Conference of Nuclear Medicine
21th World Congress on Tissue Engineering Regenerative Medicine and Stem Cell Research
16th International Conference on Human Genetics and Genetic Diseases
19th International Conference on Genomics & Pharmacogenomics
Nuclear Medicine Conference Speakers
Recommended Sessions
- Advances in Biomedical Engineering, Imaging and Screening
- Cell & Gene Therapy Development & Production
- Cell Therapy
- Cell Therapy Bioprocessing
- Cellular and Technological Breakthroughs in Cancer
- Clinical and Translational Research
- Gene Therapy
- Genetic Medicine
- Immunotherapy
- Molecular Medicine
- Nuclear Medicine
- Rare Diseases & Orphan drugs
- Stem Cell Research and Regenerative Medicine
- Synthetic Biology and CRISPR Technology
- Technologies in Stem Cell Research
Related Journals
Are you interested in
- Artificial Intelligence and Computational Biology in Regenerative Medicine - Stemgen 2026 (Japan)
- Biomaterials and Nanotechnology in Regenerative Medicine - Stemgen 2026 (Japan)
- Cancer Stem Cells and Oncology - Stemgen 2026 (Japan)
- Cardiovascular Regeneration - Stemgen 2026 (Japan)
- Clinical Trials and Translational Stem Cell Research - Stemgen 2026 (Japan)
- Ethical, Legal, and Social Implications in Stem Cell Research - Stemgen 2026 (Japan)
- Future Trends: Organoids, Bioengineering, and Next-Generation Therapies - Stemgen 2026 (Japan)
- Gene Editing and CRISPR Technologies - Stemgen 2026 (Japan)
- Induced Pluripotent Stem Cells (iPSCs) and Reprogramming - Stemgen 2026 (Japan)
- Mesenchymal Stem Cells (MSCs) in Therapy - Stemgen 2026 (Japan)
- Regenerative Dentistry and Craniofacial Applications - Stemgen 2026 (Japan)
- Regenerative Medicine and Tissue Engineering - Stemgen 2026 (Japan)
- Stem Cell Banking and Cryopreservation - Stemgen 2026 (Japan)
- Stem Cell Biology and Cellular Mechanisms - Stemgen 2026 (Japan)
- Stem Cells in Neurological and Neurodegenerative Disorders - Stemgen 2026 (Japan)
